Math 210B Lecture 5 Notes

Daniel Raban

January 16, 2019

1 Algebraic Closure

1.1 Algebraically closed fields

Definition 1.1. A polynomial splits in L[x] if it factors in L[x] as a product of linear polynomials.

Definition 1.2. A field L is algebraically closed if every nonconstant polynomial in L[x] has a root in L.

Proposition 1.1. If L[x] is algebraically closed, then every (nonconstant) polynomial in L[x] splits over L.

Corollary 1.1. If M is an algebraic extension of an algebraically closed field L, then M = L.

Theorem 1.1 (fundamental theorem of algebra). \mathbb{C} is algebraically closed.

Here is a proof that uses no algebra.

Proof. Let $f \in \mathbb{C}[x]$ have no roots in \mathbb{C} . Then 1/f is holomorphic on \mathbb{C} . Moreover, 1/f is bounded. So 1/f is constant by Liouville's theorem. Thus, f is constant.

Theorem 1.2. Let E/F be algebraic, and let $\varphi : F \to M$ be a field embedding with M algebraically closed. Then there exists a field embedding $\Phi : E \to M$ extending φ .

Proof. Let $X = \{(K, \sigma) : E/K/F, \sigma : K \to M \text{ is an embedding extending } \varphi\}$. Then $(K, \sigma) \leq (K', \sigma')$ if $K \subseteq K'$ and $\sigma'|_K = \sigma$ defines a partial order on X. Let |mcC| be a chain in X. Then $L = \bigcup_{K \in \mathcal{C}} K$ with $\tau : L \to M$ defined as $\tau|_K = \sigma$ for each $K \in \mathcal{C}$ is an upper bound for \mathcal{C} . By Zorn's lemma, we have a maximal element (Ω, Φ) .

We want to show that $\Omega = E$. Let $\alpha \in E$, and let $f \in \Omega[x]$ be its minimal polynomial $f(x) = \sum_{i=1}^{n} a_i x^i$, where $n = \deg(f)$. Define $g := \sum_{i=1}^{n} \Phi(a_i) x^i \in M[x]$. *M* is algebraically closed, so *g* has a root $\beta \in M$. So there exists $\tilde{\Phi} : \Omega(\alpha) \to M$ with $\tilde{\Phi}|_{\Omega} = \Phi$ and $\alpha \mapsto \beta$. Then $(\Omega(\alpha), \tilde{\Phi}) \ge (\Omega, \Phi)$. So $\alpha \in \Omega$, as (Ω, Φ) is maximal.

Proposition 1.2. The set of all algebraic elements over F in an extension E/F is a subfield of E, the largest intermediate field that is algebraic over F.

Proof. Let M be the set of algebraic elements over F in E. Let $\alpha, \beta \in M$. Then $F(\alpha, \beta)/F$ is finite, so it contains $\alpha - \beta$ and α/β if $\beta \neq 0$, and $F(\alpha, \beta) \subseteq M$.

Corollary 1.2. The set $\overline{\mathbb{Q}}$ of algebraic numbers in \mathbb{C} is a subfield of \mathbb{C} .

1.2 Algebraic closure

Definition 1.3. An algebraic closure of a field F is an algebraic, algebraically closed extension of F.

Proposition 1.3. Let K/E/F. Then K/F is algebraic if and only if K/E and E/F are algebraic.

Proof. (\Leftarrow): Take $\alpha \in K$, and let $f \in E[x]$ be its minimal polynomial, $f = \sum_{i=0}^{n} a_i x^i$, where $a_i \in E$. Each of these a_i is algebraic over F. Then $F(a_0, \ldots, a_n)(\alpha)$ is finite over F, so every element in it is algebraic over F, so α is algebraic over F.

Proposition 1.4. If F is a field and M/F is algebraically closed, then M contains a unique algebraic closure of F, the maximal subfield \overline{F} of M which is algebraic over F.

Proof. Suppose $f \in \overline{F}[x]$, and look at E/F, generated by the coefficients of f. E/F is finite. If $\alpha \in M$ is a foot of f, then $E(\alpha)/F$ is algebraic by the previous proposition, so α is algebraic over F. Then $\alpha \in \overline{F}$.

Corollary 1.3. $\overline{\mathbb{Q}}$ is an algebraic closure of \mathbb{Q} .

Example 1.1. $\overline{\mathbb{F}}_p := \bigcup_{n=1}^{\infty} \mathbb{F}_{p^n}$ is an algebraic closure of \mathbb{F}_p . This union makes sense because $\mathbb{F}_{p^k}, F_{p^\ell} \subseteq F_{p^m}$, where $m = \operatorname{lcm}(k, \ell)$.

Theorem 1.3. Every field F has an algebraic closure.

Proof. Let F be a field, $\Omega = \coprod_f R_f$, where f runs over monic irreducible polynomials in F[x] and R_f is a finite set with one element for each root of f in a splitting field. Then $F \subseteq \Omega$ because a is the unique root of x - a. Let $X = \{E/F \text{ algebraic} : E \subseteq \Omega, \alpha \in E\}$. Such an $\alpha \in R_f$, where f is in the minimal polynomial of α . $X \neq \emptyset$, since $F \in X$.

Let \mathcal{C} be a chain in X, and let $K = \bigcup_{E \in \mathcal{C}} E \subseteq \Omega$. Check yourself that $K \in X$. So \mathcal{C} has an upper bound. By Zorn's lemma, we have a maximal element $\overline{F} \in X$. Since $\overline{F} \in X$, it is algebraic. We claim that \overline{F} is algebraically closed. Let $f \in F[x]$ and $g \in \overline{F}[x]$ be monic and irreducible with $g \mid f$. $E = \overline{F}[x]/(g) \subseteq \Omega$ as follows: if $h \in F[x]$ is monic and irreducible with a root in E, then the distinct roots of h in $E \setminus \overline{F}$ inject into elements of $R_h \setminus \overline{F}$. By maximality, $E = \overline{F}$. So \overline{F} is algebraically closed. \Box

Proposition 1.5. If M, M' are algebraic closures of F then there exists an isomorphism $\Phi: M \to M'$ fixing F.

Proof. We have an embedding $F \to M'$. There exists a $\Phi : M \to M'$ extending this inclusion. It suffices to show that $\operatorname{im}(\Phi)$ is algebraically closed. If $\alpha \in M$ is a root of $f \in F[x]$, it maps to a root of $\Phi(\alpha)$ of f in $\Phi(M) \subseteq M'$. So $\Phi(M)$ is algebraically closed, and hence $\Phi(M) = M$.